skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Shi, Zhepu"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. NaCrO2 is a promising cathode for Na-ion batteries. However, further studies of the mechanisms controlling its specific capacities and cycle stability are needed for real-world applications in the future. This study reveals, for the first time, that the typical specific capacity of ~110 mAh/g reported by many researchers when the charge/discharge voltage window is set between 2.0 and 3.6 V vs. Na/Na+ is actually controlled by the low electronic conductivity at the electrode/electrolyte interface. Through wet solution mixing of NaCrO2 particles with carbon precursors, uniform carbon coating can be formed on the surface of NaCrO2 particles, leading to unprecedented specific capacities at 140 mAh/g, which is the highest specific capacity ever reported in the literature with the lower and upper cutoff voltages at the aforementioned values. However, such carbon-coated NaCrO2 with ultrahigh specific capacity does not improve cycle stability because with the specific capacity at 140 mAh/g the Na deintercalation during charge is more than 50% Na ions per formula unit of NaCrO2 which leads to irreversible redox reactions. The insights from this study provide a future direction to enhance the long-term cycle stability of NaCrO2 through integrating carbon coating and doping. 
    more » « less